Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Electron heat diffusivity in radially-bounded ergodic region of toroidal plasma

Kanno, Ryutaro*; Nunami, Masanori*; Satake, Shinsuke*; Matsuoka, Seikichi; Takamaru, Hisanori*

Nuclear Fusion, 58(1), p.016033_1 - 016033_7, 2018/01

 Times Cited Count:0 Percentile:0.01(Physics, Fluids & Plasmas)

The electron heat transport in a torus plasma which involves a radially-bounded ergodic region, where flux surfaces are partially destroyed by perturbative magnetic fields, is studied. In this paper, we have demonstrated that the radial heat conduction by the particles' parallel motion is reduced by trapped particles.

Journal Articles

Development of a drift-kinetic simulation code for estimating collisional transport affected by RMPs and radial electric field

Kanno, Ryutaro*; Nunami, Masanori*; Satake, Shinsuke*; Matsuoka, Seikichi; Takamaru, Hisanori*

Contributions to Plasma Physics, 56(6-8), p.592 - 597, 2016/08

 Times Cited Count:2 Percentile:11.54(Physics, Fluids & Plasmas)

A drift-kinetic $$delta f$$ simulation code is developed for estimating collisional transport in quasi-steady state of toroidal plasma affected by resonant magnetic perturbations and radial electric field. In this paper, validity of the code is confirmed through several test calculations. It is found that radial electron flux is reduced by positive radial-electric field, although radial diffusion of electron is strongly affected by chaotic field-lines under an assumption of zero electric field.

Journal Articles

Heat transport analyses

Shirai, Hiroshi

Purazuma, Kaku Yugo Gakkai-Shi, 79(7), p.691 - 705, 2003/07

Methods for heat transport analysis and heat transport simulation in toroidal plasmas are summarized on the basis of energy balance equation. Joule heating, NBI heating, RF heating and $$alpha$$ heating are briefly explained. Among the energy loss mechanism, the conduction loss and the radiation loss dominate in the core plasma region and the peripheral region, respectively. In tokamaks, the anomalous transport caused by microturbulence is much larger than the neoclassical transport. The other mechanisms of enhanced transport, the sawtooth oscillation and the magnetic island formation, are also shown.

Oral presentation

Numerical analysis of divertor erosion for Demo

Homma, Yuki; Hoshino, Kazuo; Yamoto, Shohei*; Asakura, Nobuyuki; Tokunaga, Shinsuke; Hatayama, Akiyoshi*; Sakamoto, Yoshiteru; Hiwatari, Ryoji; Tobita, Kenji

no journal, , 

no abstracts in English

Oral presentation

Neoclassical toroidal viscosity calculation method by a particle code based on a local approximation drift-kinetic model

Satake, Shinsuke*; Sugama, Hideo*; Kanno, Ryutaro*; Matsuoka, Seikichi; Idomura, Yasuhiro; Huang, B.*

no journal, , 

The accurate evaluation of the neoclassical toroidal viscosity (NTV) driven by non-axisymmetric external perturbation and/or error field in a tokamak plasma is an important topic in the fusion research, since it can make an influence on the plasma toroidal rotation. This has been widely done so far by analytically and numerically solving the bounce-averaged drift-kinetic equation based on the so-called local approximation, under which the radial drift the particle is neglected. Recently, we have developed two global kinetic simulations based on $$delta f$$ and full-$$f$$ models respectively. It has been shown that the so-called Superbanana-Plateau collisionality regime expected in the bounce-averaged theory, in which the NTV is independent of the collisionality, is not observed in both global kinetic simulations. On the other hand, however, the two global simulations reproduce the similar collisionality dependencies of the NTV. With regard to the discrepancy of the theory and the global kinetic simulations, it has been recently pointed out that the effect of the magnetic field shear on the toroidal precession drift is not retained in the theory. In this study, we perform particle simulations, which is based on the local approximation, for the NTV. We discuss the cause of the discrepancy of the difference between the bounce-averaged local theory and the global kinetic simulations by investigating the effect of shear on the toroidal precession drift using the local particle simulations.

Oral presentation

Comparison of bootstrap current calculation in helical plasmas among different types of approximations in drift-kinetic equation

Huang, B.*; Satake, Shinsuke*; Kanno, Ryutaro*; Matsuoka, Seikichi

no journal, , 

The bootstrap current, or the parallel flow in a toroidal plasma is described by the neoclassical transport theory. In recent studies, it was pointed out that numerical models of the radially-local neoclassical transport, in which the radial drift of particles is entirely neglected, can be classified according to approximations used in the models. In this work, we perform a series of benchmarks of the parallel flow for the LHD, HSX, and W7-X by using three types of the local neoclassical transport simulations models. It is shown that the magnetic drift tangential to a flux surface significantly changes the parallel flow when the radial electric field is weak in a low-collisional LHD plasma. We also find that the effect of the tangential drift becomes small in other magnetic configurations of HSX and W7-X.

Oral presentation

Future works on radiation transport simulations

Kurikami, Hiroshi

no journal, , 

JAEA operates RESET, a system that predicts decontamination effects to support local government decontamination plans. In the next phase, we continue research on radiation assessment using advanced radiation transport simulation tools such as 3D-ADRES.

Oral presentation

Collaboration of large and compact neutron facilities for the development of neutron diffraction material evaluation techniques

Xu, P. G.; Iwamoto, Chihiro*; Yamamoto, Kazuyoshi; Morooka, Satoshi; Takamura, Masato*; Wu, S.*; Otake, Yoshie*; Shobu, Takahisa

no journal, , 

8 (Records 1-8 displayed on this page)
  • 1